Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 14(1): 2912, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217515

RESUMO

Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.


Assuntos
Transtorno Depressivo Maior , Transcriptoma , Masculino , Feminino , Humanos , Transcriptoma/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Córtex Pré-Frontal/metabolismo , Depressão/genética , Encéfalo/metabolismo
2.
Acta Neuropathol ; 145(4): 439-459, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36729133

RESUMO

Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.


Assuntos
Transtornos Mentais , Neocórtex , Humanos , Transtornos Mentais/genética , Envelhecimento/genética , Neurônios , Genótipo , Polimorfismo de Nucleotídeo Único
3.
Mol Psychiatry ; 27(3): 1552-1561, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34799691

RESUMO

Child abuse (CA) is a strong predictor of psychopathologies and suicide, altering normal trajectories of brain development in areas closely linked to emotional responses such as the prefrontal cortex (PFC). Yet, the cellular underpinnings of these enduring effects are unclear. Childhood and adolescence are marked by the protracted formation of perineuronal nets (PNNs), which orchestrate the closure of developmental windows of cortical plasticity by regulating the functional integration of parvalbumin interneurons into neuronal circuits. Using well-characterized post-mortem brain samples, we show that a history of CA is specifically associated with increased densities and morphological complexity of WFL-labeled PNNs in the ventromedial PFC (BA11/12), possibly suggesting increased recruitment and maturation of PNNs. Through single-nucleus sequencing and fluorescent in situ hybridization, we found that the expression of canonical components of PNNs is enriched in oligodendrocyte progenitor cells (OPCs), and that they are upregulated in CA victims. These correlational findings suggest that early-life adversity may lead to persistent patterns of maladaptive behaviors by reducing the neuroplasticity of cortical circuits through the enhancement of developmental OPC-mediated PNN formation.


Assuntos
Maus-Tratos Infantis , Células Precursoras de Oligodendrócitos , Criança , Matriz Extracelular/metabolismo , Humanos , Hibridização in Situ Fluorescente , Interneurônios/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo
4.
Curr Protoc ; 1(11): e288, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34767311

RESUMO

Environmental factors influence many traits of biological interest, but reproducing an animal's natural habitat in a controlled laboratory environment is challenging. Environmental enrichment-adding complexity to the usually simplistic conditions under which laboratory animals are raised-offers a potential tool for better understanding biological traits while maintaining controlled laboratory conditions. For the model nematode Caenorhabditis elegans, the contrast between the natural environment and the laboratory conditions in which they are raised is enormous. Although several methods have been developed in an effort to complexify C. elegans laboratory conditions, there is still a need for an enriched controlled laboratory habitat in which C. elegans can be raised over several generations, the bacterial food availability is similar to that in traditional agar plates, and the animals are crawling as opposed to swimming or burrowing. To this end, we describe here a standardized protocol for creating controlled, reproducible, three-dimensional environments for multigenerational maintenance of C. elegans in the laboratory. These environments are derived from decellularized apple hypanthium tissue and have bacterial food uniformly distributed throughout. We also describe how traditional C. elegans methods of collecting synchronized eggs, cleaning contaminated stocks, and collecting animal populations are adapted to our scaffold environment. These methods can be adapted to host different bacteria or bacterial populations, and the resulting scaffolds can be used in a range of experimental designs for behavioral and phenotypical studies in C. elegans and other nematodes. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Decellularization and storage of apple tissue Basic Protocol 2: Preparation of plates from decellularized apple scaffolds Basic Protocol 3: Synchronization of eggs or animals and cleaning contaminated stocks from scaffold plates Alternate Protocol: Collection of non-synchronized larvae and adults from scaffold plates.


Assuntos
Malus , Nematoides , Animais , Caenorhabditis elegans , Ecossistema , Frutas
5.
Nat Protoc ; 16(6): 2788-2801, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33972803

RESUMO

Single-cell and single-nucleus sequencing techniques are a burgeoning field with various biological, biomedical and clinical applications. Numerous high- and low-throughput methods have been developed for sequencing the RNA and DNA content of single cells. However, for all these methods, the key requirement is high-quality input of a single-cell or single-nucleus suspension. Preparing such a suspension is the limiting step when working with fragile, archived tissues of variable quality. This hurdle can prevent such tissues from being extensively investigated with single-cell technologies. We describe a protocol for preparing single-nucleus suspensions within the span of a few hours that reliably works for multiple postmortem and archived tissue types using standard laboratory equipment. The stages of the protocol include tissue preparation and dissociation, nuclei extraction, and nuclei concentration assessment and capture. The protocol is comparable to other published protocols but does not require fluorescence-assisted nuclei sorting (FANS) or ultracentrifugation. The protocol can be carried out by a competent graduate student familiar with basic laboratory techniques and equipment. Moreover, these preparations are compatible with single-nucleus (sn)RNA-seq and assay for transposase-accessible chromatin (ATAC)-seq using the 10X Genomics Chromium system. The protocol reliably results in efficient capture of single nuclei for high-quality snRNA-seq libraries.


Assuntos
Núcleo Celular , Análise de Sequência de DNA , Análise de Célula Única/métodos , Humanos
6.
PLoS One ; 16(1): e0245139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428657

RESUMO

As we learn more about the importance of gene-environment interactions and the effects of environmental enrichment, it becomes evident that minimalistic laboratory conditions can affect gene expression patterns and behaviors of model organisms. In the laboratory, Caenorhabditis elegans is generally cultured on two-dimensional, homogeneous agar plates abundantly covered with axenic bacteria culture as a food source. However, in the wild, this nematode thrives in rotting fruits and plant stems feeding on bacteria and small eukaryotes. This contrast in habitat complexity suggests that studying C. elegans in enriched laboratory conditions can deepen our understanding of its fundamental traits and behaviors. Here, we developed a protocol to create three-dimensional habitable scaffolds for trans-generational culture of C. elegans in the laboratory. Using decellularization and sterilization of fruit tissue, we created an axenic environment that can be navigated throughout and where the microbial environment can be strictly controlled. C. elegans were maintained over generations on this habitat, and showed a clear behavioral bias for the enriched environment. As an initial assessment of behavioral variations, we found that dauer populations in scaffolds exhibit high-frequency, complex nictation behavior including group towering and jumping behavior.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Ecossistema , Imageamento Tridimensional , Animais , Caenorhabditis elegans/crescimento & desenvolvimento
7.
Bioinformatics ; 37(10): 1345-1351, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33226074

RESUMO

MOTIVATION: Single-cell RNA-sequencing (scRNA-seq) offers the opportunity to dissect heterogeneous cellular compositions and interrogate the cell-type-specific gene expression patterns across diverse conditions. However, batch effects such as laboratory conditions and individual-variability hinder their usage in cross-condition designs. RESULTS: Here, we present a single-cell Generative Adversarial Network (scGAN) to simultaneously acquire patterns from raw data while minimizing the confounding effect driven by technical artifacts or other factors inherent to the data. Specifically, scGAN models the data likelihood of the raw scRNA-seq counts by projecting each cell onto a latent embedding. Meanwhile, scGAN attempts to minimize the correlation between the latent embeddings and the batch labels across all cells. We demonstrate scGAN on three public scRNA-seq datasets and show that our method confers superior performance over the state-of-the-art methods in forming clusters of known cell types and identifying known psychiatric genes that are associated with major depressive disorder. AVAILABILITYAND IMPLEMENTATION: The scGAN code and the information for the public scRNA-seq datasets are available at https://github.com/li-lab-mcgill/singlecell-deepfeature. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Transtorno Depressivo Maior , Análise de Célula Única , Perfilação da Expressão Gênica , Humanos , Análise de Sequência de RNA , Transcriptoma
8.
Nat Neurosci ; 23(6): 771-781, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341540

RESUMO

Major depressive disorder (MDD) has an enormous impact on global disease burden, affecting millions of people worldwide and ranking as a leading cause of disability for almost three decades. Past molecular studies of MDD employed bulk homogenates of postmortem brain tissue, which obscures gene expression changes within individual cell types. Here we used single-nucleus transcriptomics to examine ~80,000 nuclei from the dorsolateral prefrontal cortex of male individuals with MDD (n = 17) and of healthy controls (n = 17). We identified 26 cellular clusters, and over 60% of these showed differential gene expression between groups. We found that the greatest dysregulation occurred in deep layer excitatory neurons and immature oligodendrocyte precursor cells (OPCs), and these contributed almost half (47%) of all changes in gene expression. These results highlight the importance of dissecting cell-type-specific contributions to the disease and offer opportunities to identify new avenues of research and novel targets for treatment.


Assuntos
Transtorno Depressivo Maior/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neurônios/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Córtex Pré-Frontal/metabolismo , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Int J Bipolar Disord ; 7(1): 17, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31385059

RESUMO

Bipolar disorder is highly heritable and typically onsets in late adolescence or early adulthood. Evidence suggests that immune activation may be a mediating pathway between genetic predisposition and onset of mood disorders. Building on a prior study of mRNA and protein levels in high-risk offspring published in this Journal, we conducted a preliminary examination of methylation profiles in candidate immune genes from a subsample of well-characterized emergent adult (mean 20 years) offspring of bipolar parents from the Canadian Flourish high-risk cohort. Models were adjusted for variable age at DNA collection, sex and antidepressant and mood stabilizer use. On cross-sectional analysis, there was evidence of higher methylation rates for BDNF-1 in high-risk offspring affected (n = 27) and unaffected (n = 23) for mood disorder compared to controls (n = 24) and higher methylation rates in affected high-risk offspring for NR3C1 compared to controls. Longitudinal analyses (25 to 34 months) provided evidence of steeper decline in methylation rates in controls (n = 24) for NR3C1 compared to affected (n = 15) and unaffected (n = 11) high-risk offspring and for BDNF-2 compared to affected high-risk. There was insufficient evidence that changes in any of the candidate gene methylation rates were associated with illness recurrence in high-risk offspring. While preliminary, findings suggest that longitudinal investigation of epigenetic markers in well-characterized high-risk individuals over the peak period of risk may be informative to understand the emergence of bipolar disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...